3) ¿Cuáles son sus equivalencias?. 4) Si se levanta un cuerpo desde el suelo, ¿hay trabajo?.
5) ¿Las máquinas simples, realizan trabajo?.
6) ¿Cómo es el termómetro clínico?
7) ¿Qué es la temperatura o escala absoluta?
8) ¿Cómo pasa a escala absoluta de escala Celsius?
9) ¿Qué tipos de termómetros puede mencionar?
10) ¿Qué es dilatación?
11) ¿Qué relación existe entre los coeficientes de dilatación lineal, superficial y cúbica?
12) ¿Cómo se dilatan los líquidos?
Ejercicios:
1.- En Gran Bretaña aún se usa la escala Rankine, en donde la relación con la escala Kelvin es t°R = t°K. Determine los puntos de fusión y ebullición del agua en la escala.
2.- La temperatura de ebullición del oxígeno es de 90,19°K. Determine dicha temperatura en las escalas Celsius, Fahrenheit y Rankine. (-183; -297; 162)
3.- Expresar la temperatura normal del cuerpo, 37°C, en las escalas: Fahrenheit, Kelvin.
4.- Si es que las hay. ¿A qué temperaturas son iguales (los valores numéricos) las escalas: a) Celsius y Fahrenheit; b) Kelvin y Fahrenheit; c) Kelvin y Celsius?
5.- El punto de ebullición normal del helio es 2,2°K; una temperatura ambiente confortable es 295°K; la superficie del Sol está a una temperatura en torno a los 6.000 °K; el interior de una estrella está a una temperatura de alrededor de diez millones de °K. Expresar estas temperaturas en: a) escala Celsius; b) escala Fahrenheit
6.- ¿En qué valor numérico, una medida de temperatura en la escala Celsius es el doble que en la escala Fahrenheit?
7.- Termito acaba de inventar, para su uso personal, una escala termométrica, en donde se pudo saber que: la fusión del agua se produce a los 100 °ter y cada grado ter equivale a 2°C. Determine: a) la temperatura de ebullición del agua en °ter, b) el 0°ter en °C, c) el cero absoluto en °ter.
8.- ¿En qué valor numérico la temperatura medida en la escala Fahrenheit es el doble que en la escala Celsius?
9.- Un día de verano se registra una temperatura mínima de 10º C y una máxima de 32ºC. Determine el intervalo de temperatura (variación térmica) de ese día en: a) grados Celsius, b) grados Kelvin, c) grados Fahrenheit.
10.- Determine la variación térmica de un día de invierno en que se registra una temperatura mínima de 0ºC y una máxima de 12ºC, en: a) grados Celsius, b) grados Kelvin, c) grados Fahrenheit.
11.- Un objeto A tiene una temperatura de –20ºC y otro B tiene una temperatura de 40ºC, se ponen en contacto y luego de un tiempo llegan a un equilibrio térmico en 15ºC. Determine cuántos grados subió el objeto A y cuántos grados bajó el objeto B, en: a) grados Celsius, b) grados Kelvin, c) grados Fahrenheit.
12.- Averigue la temperatura de fusión y de ebullición del cloro. Con esos valores idee una escala termométrica donde la temperatura de fusión del cloro sea 0º y la de ebullición sea de 100º. Con esta escala ideada por usted encuentre, en grados Celsius, la equivalencia con: a) 100ºC, b) 0ºC, c) 100ºF, d) 0ºF, e) 0ºK.
11.- Bárbara, la gran amiga de Ernesto, inventó su propia escala termométrica y la definió a partir de los siguientes puntos de referencia: a la temperatura de 10 ºC le asignó el valor 0 ºB, y a los 170 ºC le asignó el valor 100 ºB. Determine, en ºB, la temperatura de 50 ºC.
Resolver los siguientes problemas:
Problema n° 1) Transformar 250 kgf.m a Joul y kW.h.
Problema n° 2) ¿Cuántos kgf.m y Joul representan 25 kW.h?.
Problema n° 3) Indicar cuántos Joul y kW.h son 125478 kgm.
Problema n° 4) Indicar el trabajo necesario para deslizar un cuerpo a 2 m de su posición inicial mediante una fuerza de 10 N.
Problema n° 5) ¿Qué trabajo realiza un hombre para elevar una bolsa de 70 kgf a una altura de 2,5 m?. Expresarlo en:
a) kgf.m
b) Joule
c) kW.h
Problema n° 6) Un cuerpo cae libremente y tarda 3 s en tocar tierra. Si su peso es de 4 N, ¿qué trabajo deberá efectuarse para elevarlo hasta el lugar desde donde cayo?. Expresarlo en:
a) Joule.
b) kgm.
Ejercicio:
1.- Se tiene un trozo de hielo de 1 kg a una temperatura de -40 °C
a) ¿Cuánto calor se necesita para transformarlo a vapor de agua?
Se hacen todos los pasos del a) al d), y luego se suman los resultados parciales.
b) ¿Cuánto calor se necesita para transformar a vapor de agua sólo la mitad del hielo?. Considere que nunca se quita parte alguna del trozo de hielo inicial, ni siquiera cuando es agua.
En los siguientes ejercicios considere calor de fusión del agua 80 cal/gr y calor de vaporización 540 cal/gr.
2.- Hallar la temperatura resultante de la mezcla de 150 gr de hielo a 0°C y 300 gr de agua a 50°C. (6,7°C apx.)
3.- Hallar el calor que se debe extraer de 20 gr de vapor de agua a 100 °C para condensarlo y enfiarlo hasta 20 °C. (1,24x104 cal)
4.- Hallar el número de kilocalorías absorbidas por una nevera eléctrica al enfriar 3 kg de agua a 15 °C y transformarlos en hielo a 0 °C. (285 kcal)
5.- Un sistema físico está constituido por la mezcla de 500 gr de agua y 100 gr de hielo a la temperatura de equilibrio de 0 °C. Se introducen en este sistema 200 gr de vapor de agua a 100 °C. Hallar la temperatura final y la composición de la mezcla. (74 gr de vapor y 726 gr de agua, todo a 100 °C)
6.- Hallar la temperatura de la mezcla de 1 kg de hielo a 0 °C con 9 kg de agua a 50 °C. (37 °C)
7.- Calcular la cantidad de calor necesaria para transformar 10 gr de hielo a 0 °C en vapor a 100 °C. (7,2 kcal)
8.- Se hacen pasar 5 kg de vapor de agua a 100 °C por 250 kg de agua a 10 °C. Hallar la temperatura resultante. (23,25 °C)
1.- ¿Cuántas calorías ceden 50kg de cobre al enfriarse desde 36oC hasta -4 °C?
2.- Un bloque de acero (c = 0,12) de 1,5 toneladas se calienta hasta absorber l,8xl06cal. ¿A qué temperatura queda si estaba a 10oC?
3.- ¿Cuál es la capacidad calórica de una caja de latón si tiene una masa de 250gr?
4.- ¿Cuántas calorías absorbe una barra de fierro cuando se calienta desde -4oC hasta 180oC, siendo su masa de 25kg?
5.- ¿Qué masa tiene una plancha de cobre si cede 910cal al enfriarse desde 192oC hasta -8oC?
6.- ¿Cuántas calorías absorbe 1/4 litro de mercurio (densidad = 13,6; masa = densidad por volumen) cuando se calienta desde -20oC hasta 30oC?
7.- Para calentar 3/4 litros de mercurio que están a 5oC se absorben 6,6Kcal. ¿A qué temperatura queda?
8.- Se tienen 2,5 toneladas de fierro que ceden 2,2xl06cal al enfriarse desde 1000oC. ¿A qué temperatura queda?
9.- Se mezclan 400gr de agua a 80oC con 500gr de alcohol a 10oC. ¿A qué temperatura queda la mezcla?
10.- Se mezclan 200gr de agua hirviendo con 50gr de leche, si la leche "aguada" queda a una temperatura de 80oC. ¿A qué temperatura estaba la leche?
1.) En una maquinaria se tienes 3 engranajes A, B y C acopladas, el numero de dientes de cada engranaje es Na= 20 Nb=15 Nc=25 la velocidad de rotación del engranaje B es de 2 Rev/s ¿cuáles son las velocidades de rotación de los engranajes Ay C?
·Un calorímetro de cobre que tiene 55 gr. (Ce= 0.093 cal/gr° C) contiene 250 gr de H2O a 18°C cuando se dejan caer dentro el calorímetro 75 gr. De una aleación a 100°C la temperatura resultante es 20.4°C ¿ cual es el Ce de la aleación?
·Determinar la temperatura resultante cuando 1Kg de hielo a 0°C se mezcla con 9Kg de H2O a 50°C .
·10 Lb de vapor a212 se condensan en 500 lb de H2O a 40°F ¿cuál es la temperatura resultante?
·Una dieta normal debe aportar 20000000 cal. Nutricionales a una persona de 60Kg . Si esta energía se usara para calentar a una persona que no experimenta perdidas con los alrededores ¿cuánto se incrementa la temperatura a esa persona?
Ce= 0.83 cal./gr°C para la persona
EJERCICIOS
PROBLEMAS
1. SI EN LA CIUDAD DE MÉXICO EL DIA 11 DE ENERO SE REGISTRO UNA TEMPERATURA DE 10°C ¿QUÉ TEMPERATURA SERÍA EN GRADOS FAHRENHEIT Y KELVIN?
2. SI LA TEMPERATURA EN TOLUCA ES DE 6°C ¿QUÉ TEMPERATURA SERÍA EN GRADOS FAHRENHEIT Y EN GRADOS KELVIN?
Resolver:
1) Calcular la densidad en g/cm ³ de:
a) granito, si una pieza rectangular de 0,05 m x 0,1 m x 23 cm, tiene una masa de 3,22 kg.
b) leche, si 2 litros tienen una masa de 2,06 kg.
c) cemento, si una pieza rectangular de 2 cm x 2 cm x 9 cm, tiene una masa de 108 g.
d) nafta, si 9 litros tienen una masa de 6.120 g.
e) Marfil, si una pieza rectangular de 23 cm x 15 cm x 15,5 cm, tienen una masa de 10,22 kg.
2) Calcular la masa de:
a) 6,96 cm ³ de cromato de amónio y magnesio si la densidad es de 1,84 g/cm ³.
b) 86 cm ³ de fosfato de bismuto si la densidad es de 6,32 g/cm ³.
c) 253 mm ³ de oro si la densidad es de 19,3 g/cm ³.
d) 1 m ³ de nitrógeno si la densidad es de 1,25 g/l.
e) 3,02 cm ³ de bismuto si la densidad es de 9,8 g/cm ³.
f) 610 cm ³ de perclorato de bario si la densidad es de 2,74 g/cm ³.
g) 3,28 cm ³ de antimonio si la densidad es de 6,7 g/cm ³.
3) Calcular el volumen de:
a) 3,37 g de cloruro de calcio si la densidad es de 2,15 g/cm ³.
b) 40,5 g de silicato de cromo si la densidad es de 5,5 g/cm ³.
c) 2,13 kg de estaño si la densidad es de 7,28 g/cm ³.
d) 12,5 g de hierro si la densidad es de 7,87 g/cm ³.
e) 706 g de sulfato de cerio si la densidad es de 3,17 g/cm ³.
f) 32,9 g de magnesio si la densidad es de 1,74 g/cm ³.
4) La densidad del azúcar es 1590 kg/m ³, calcularla en g/cm ³.
La termometría se encarga de la medición de la temperatura de cuerpos o sistemas. Para este fin, se utiliza el termómetro, que es un instrumento que se basa en el cambio de alguna propiedad de la materia debido al efecto del calor; así se tiene el termómetro de mercurio y de alcohol, que se basan en la dilatación, los termopares que deben su funcionamiento al cambio de la conductividad eléctrica, los ópticos que detectan la variación de la intensidad del rayo emitido cuando se refleja en un cuerpo caliente.
Para poder construir el termómetro se utiliza el Principio Cero de la Termodinámica que dice: "Si un sistema A que está en equilibrio térmico con un sistema B, está en equilibrio térmico también con un sistema C, entonces los tres sistemas A, B y C están en equilibrio térmico entre sí".
Propiedades termométricas
Una propiedad termométrica de una sustancia es aquella que varía en el mismo sentido que la temperatura, es decir, si la temperatura aumenta su valor, la propiedad también lo hará, y viceversa.
Sistema aislado térmicamente
Se denomina sistema a cualquier conjunto de materia limitado por una superficie real o imaginaria. Todo aquello que no pertenece al sistema pero que puede influir en él se denomina medio ambiente.
Se puede definir el calor como la energía transmitida hacia o desde un sistema, como resultado de una diferencia de temperaturas entre el sistema y su medio ambiente. Así como se define un sistema aislado o sistema cerrado como un sistema en el que no entra ni sale materia, un sistema aislado térmicamente o S.A.T. se define como un sistema en el que no entra ni sale calor. Un ejemplo clásico que simula un sistema aislado térmicamente es un termo que contiene agua caliente, dado que el agua no recibe ni entrega calor al medio ambiente.
Una propiedad importantes de un S.A.T. es que, dentro de él, la temperatura siempre se mantiene constante después de transcurrido un tiempo suficientemente largo. Si dentro del S.A.T. hay más de una temperatura, al cabo de dicho tiempo, el S.A.T. tendrá sólo una temperatura llamada temperatura de equilibrio, y se dirá entonces que el sistema llegó al equilibrio térmico. En general, un sistema está en equilibrio térmico cuando todos los puntos del sistema se hallan a la misma temperatura, o dicho de otra forma, cuando las propiedades físicas del sistema que varían con la temperatura no varían con el tiempo.
Escalas termométricas
Existen varias escalas termométricas para medir temperaturas, relativas y absolutas.
A partir de la sensación fisiológica, es posible hacerse una idea aproximada de la temperatura a la que se encuentra un objeto. Pero esa apreciación directa está limitada por diferentes factores; así el intervalo de temperaturas a lo largo del cual esto es posible es pequeño; además, para una misma temperatura la sensación correspondiente puede variar según se haya estado previamente en contacto con otros cuerpos más calientes o más fríos y, por si fuera poco, no es posible expresar con precisión en forma de cantidad los resultados de este tipo de apreciaciones subjetivas. Por ello para medir temperaturas se recurre a los termómetros.
En todo cuerpo material la variación de la temperatura va acompañada de la correspondiente variación de otras propiedades medibles, de modo que a cada valor de aquella le corresponde un solo valor de ésta. Tal es el caso de la longitud de una varilla metálica, de la resistencia eléctrica de un metal, de la presión de un gas, del volumen de un líquido, etc. Estas magnitudes cuya variación está ligada a la de la temperatura se denominan propiedades termométricas, porque pueden ser empleadas en la construcción de termómetros.
Para definir una escala de temperaturas es necesario elegir una propiedad termométrica que reúna las siguientes condiciones:
La expresión matemática de la relación entre la propiedad y la temperatura debe ser conocida.
La propiedad termométrica debe ser lo bastante sensible a las variaciones de temperatura como para poder detectar, con una precisión aceptable, pequeños cambios térmicos.
El rango de temperatura accesible debe ser suficientemente grande.
Una vez que la propiedad termométrica ha sido elegida, la elaboración de una escala termométrica o de temperaturas lleva consigo, al menos, dos operaciones; por una parte, la determinación de los puntos fijos o temperaturas de referencia que permanecen constantes en la naturaleza y, por otra, la división del intervalo de temperaturas correspondiente a tales puntos fijos en unidades o grados.
Lo que se necesita para construir un termómetro, son puntos fijos, es decir procesos en los cuales la temperatura permanece constante. Ejemplos de procesos de este tipo son el proceso de ebullición y el proceso de fusión.
Existen varias escalas para medir temperaturas, las más importantes son la escala Celsius, la escala Kelvin y la escala Fahrenheit.
Escala Celsius o centígrada
El científico sueco Anders Celsius (1701-1744) construyó por primera vez la escala termométrica que lleva su nombre. Eligió como puntos fijos el de fusión del hielo y el de ebullición del agua, tras advertir que las temperaturas a las que se verificaban tales cambios de estado eran constantes a la presión atmosférica. Asignó al primero el valor 0 y al segundo el valor 100, con lo cual fijó el valor del grado Celsius (°C) como la centésima parte del intervalo de temperatura comprendido entre esos dos puntos fijos.
Para esta escala, estos valores se escriben como 100 °C y 0 °C y se leen 100 grados celsius y0 grados celsius, respectivamente.
Escala Fahrenheit
En los países anglosajones se pueden encontrar aún termómetros graduados en grado Fahrenheit (°F), propuesta por Gabriel Fahrenheit en 1724. La escala Fahrenheit difiere de la Celsius tanto en los valores asignados a los puntos fijos, como en el tamaño de los grados. En la escala Fahrenheit los puntos fijos son los de ebullición y fusión de una disolución de cloruro amónico en agua. Así al primer punto fijo se le atribuye el valor 32 y al segundo el valor 212. Para pasar de una a otra escala es preciso emplear la ecuación:
donde t(°F) representa la temperatura expresada en grados Fahrenheit y t(°C) la expresada en grados Celsius.
Su utilización se circunscribe a los países anglosajones y a Japón, aunque existe una marcada tendencia a la unificación de sistemas en la escala Celsius.
Escala Kelvin o absoluta
Se comparan las escalas Celsius yKelvin mostrando los puntos de referencia anteriores a 1954 y los posteriores para mostrar cómo ambas convenciones coinciden. De colornegro aparecen el punto triple del agua(0,01 °C, 273,16 K) y el cero absoluto(-273,15 °C, 0 K). De color gris los puntos de congelamiento (0,00 °C, 273,15 K) y ebullición del agua (100 °C, 373,15 K).
Si bien en la vida diaria las escalas Celsius y Fahrenheit son las más importantes, en ámbito científico se usa otra, llamada "absoluta" o Kelvin, en honor a sir Lord Kelvin.
En la escala absoluta, al 0 °C le hace corresponder 273,15 K, mientras que los 100 °C se corresponden con 373,15 K. Se ve inmediatamente que 0 K está a una temperatura que un termómetro centígrado señalará como -273,15 °C. Dicha temperatura se denomina "cero absoluto".
Se puede notar que las escalas Celsius y Kelvin poseen la misma sensibilidad. Por otra parte, esta última escala considera como punto de referencia el punto triple del agua que, bajo cierta presión, equivale a 0.01 °C.
La escala de temperaturas adoptada por el Sistema Internacional de Unidades es la llamada escala absoluta o Kelvin. En ella el tamaño de los grados es el mismo que en la Celsius, pero el cero de la escala se fija en el - 273,15 °C. Este punto llamado cero absoluto de temperaturas es tal que a dicha temperatura desaparece la agitación molecular, por lo que, según el significado que la teoría cinética atribuye a la magnitud temperatura, no tiene sentido hablar de valores inferiores a él. El cero absoluto constituye un límite inferior natural de temperaturas, lo que hace que en la escala Kelvin no existan temperaturas bajo cero (negativas). La relación con la escala Celsius viene dada por la ecuación:
Se denomina Rankine (simbolo R) a la escala de temperatura que se define midiendo en grados Fahrenheit sobre el cero absoluto, por lo que carece de valores negativos. Esta escala fue propuesta por el físico e ingeniero escocés William Rankine en 1859.
La escala Rankine tiene su punto de cero absoluto a −459,67 °F y los intervalos de grado son idénticos al intervalo de grado Fahrenheit.
siendo T(R) la temperatura expresada en grados Rankine.
Usado comúnmente en Inglaterra y en EE.UU. como medida de temperatura termodinámica. Aunque en la comunidad científica las medidas son efectuadas en Sistema Internacional de Unidades, por tanto la temperatura es medida en kelvins (K).
Escalas de temperatura en desuso
Escala Réaumur
Grado Réaumur (ºRé), en desuso. Se debe a René-Antoine Ferchault de Réaumur (1683-1757). La relación con la escala Celsius es:
siendo T(ºRø) la temperatura expresada en grados Rømer.
Escala Delisle
Creada por el astrónomo francés Joseph-Nicolas Delisle. Sus unidades son los grados Delisle (o De Lisle), se representan con el símbolo ºDe y cada uno vale -2/3 de un grado Celsius o Kelvin. El cero de la escala está a la temperatura de ebullición del agua y va aumentando según descienden las otras escalas hasta llegar al cero absoluto a 559.725ºDe.
siendo T(ºN) la temperatura expresada en grados Newton.
Escala Leiden
Grado Leiden (ºL) usado para calibrar indirectamente bajas temperaturas. Actualmente en desuso.
Dilatación y termometría
El hecho de que las dimensiones de los cuerpos, por lo general, aumenten regularmente con la temperatura, ha dado lugar a la utilización de tales dimensiones como propiedades termométricas y constituyen el fundamento de la mayor parte de los termómetros ordinarios. Los termómetros de líquidos, como los de alcohol coloreado empleados en meteorología o los de mercurio, de uso clínico, se basan en el fenómeno de la dilatación y emplean como propiedad termométrica el volumen del líquido correspondiente.
La longitud de una varilla o de un hilo metálico puede utilizarse, asimismo, como propiedad termométrica. Su ley de variación con la temperatura para rangos no muy amplios (de 0º a 100 °C) es del tipo:
lt = l0 (1 + a–t)
donde lt representa el valor de la longitud a t grados Celsius, l0 el valor a cero grados y es un parámetro o constante característica de la sustancia que se denomina coeficiente de dilatación lineal. La ecuación anterior permite establecer una correspondencia entre las magnitudes longitud y temperatura, de tal modo que midiendo aquélla pueda determinarse ésta.
Una aplicación termométrica del fenómeno de dilatación en sólidos lo constituye el termómetro metálico. Está formado por una lámina bimetálica de materiales de diferentes coeficientes de dilatación lineal que se consigue soldando dos láminas de metales tales como latón y acero, de igual longitud a 0 °C. Cuando la temperatura aumenta o disminuye respecto del valor inicial, su diferente da lugar a que una de las láminas se dilate más que la otra, con lo que el conjunto se curva en un sentido o en otro según que la temperatura medida sea mayor o menor que la inicial de referencia. Además, la desviación es tanto mayor cuanto mayor es la diferencia de temperaturas respecto de 0 °C. Si se añade una aguja indicadora al sistema, de modo que pueda moverse sobre una escala graduada y calibrada con el auxilio de otro termómetro de referencia, se tiene un termómetro metálico.
Otras propiedades termométricas
Algunas magnitudes físicas relacionadas con la electricidad varían con la temperatura siguiendo una ley conocida, lo que hace posible su utilización como propiedades termométricas. Tal es el caso de la resistencia eléctrica de los metales cuya ley de variación con la temperatura es del tipo:
R = R0 (1 + at + bt2)
siendo R0 el valor de la resistencia a 0 °C y a y b dos constantes características que pueden ser determinadas experimentalmente a partir de medidas de R para temperaturas conocidas y correspondientes a otros tantos puntos fijos.
Conocidos todos los parámetros de la anterior ecuación, la medida de temperaturas queda reducida a otra de resistencias sobre una escala calibrada al efecto. Los termómetros de resistencia emplean normalmente un hilo de platino como sensor de temperaturas y poseen un amplio rango de medidas que va desde los -200 °C hasta los 1 200 °C.
Los termómetros de termistores constituyen una variante de los de resistencia. Emplean resistencias fabricadas con semiconductores que tienen la propiedad de que su resistencia disminuye en vez de aumentar con la temperatura (termistores). Este tipo de termómetros permiten obtener medidas casi instantáneas de la temperatura del cuerpo con el que están en contacto.
Aplicación de las escalas termométricas
La relación existente entre las escalas termométricas más empleadas permite expresar una misma temperatura en diferentes formas, esto es, con resultados numéricos y con unidades de medida distintas. Se trata, en lo que sigue, de aplicar las ecuaciones de conversión entre escalas para determinar la temperatura en grados Celsius y en grados Fahrenheit de un cuerpo, cuyo valor en Kelvin es de 77 K.
Para la conversión de K en °C se emplea la ecuación:
t(°C) = T(K) - 273
es decir:
t(°C) = 77 - 273 = - 196 °C
Para la conversión en °F se emplea la ecuación:
t(°F) = 1,8 · t(°C) + 32
t(°F) = 1,8 · (- 196) + 32 = - 320,8 °F
Sistemas Materiales
Un sistema material es una porción específica de materia, confinada en una porción de espacio, y que se ha seleccionado para su estudio. Se diferencia de un objeto material en que éste tiene unos límites bien definidos, mientras los sistemas materiales no presentan límites tan precisos.
Un sistema puede ser cualquier objeto, cualquier cantidad de materia, cualquier región del espacio, etc., seleccionado para estudiarlo y aislarlo (mentalmente) de todo lo demás, lo cual se convierte entonces en el entorno del sistema.
El sistema y su entorno forman el universo.
La envoltura imaginaria que encierra un sistema y lo separa de sus inmediaciones (entorno) se llama frontera del sistema y puede pensarse que tiene propiedades especiales que sirven para:
a) aislar el sistema de su entorno b) permitir la interacción de un modo específico entre el sistema y su ambiente.
Llamamos sistema, o medio interior, a la porción del espacio limitado por una superficie real o ficticia, donde se sitúa la materia estudiada. El resto del universo es el medio exterior. La distinción entre sistema y entorno es arbitraria: el sistema es lo que el observador ha escogido para estudiar.
SISTEMA ABIERTOSe caracteriza porque su estado original se modifica constantemente por la acción retroalimentadora del ambiente, desde su nacimiento hasta su extinción. Su vida útil depende de su adaptabilidad a las exigencias del ambiente (homeostasis).
SISTEMA CERRADOEs aquel sistema en el que existe intercambio de energía pero no de materia.
SISTEMA AISLADOEs un sistema utópico, en el que no existe intercambio de materia ni de energía. Se considera que sus "paredes" son adiabaticas.
CORRIENTE ELECTRICA Y CIRCUITOS
LA CORRIENTE ELÉCTRICA
Lo que conocemos como corriente eléctrica no es otra cosa que la circulación de cargas o electrones a través de un circuito eléctrico cerrado, que se mueven siempre del polo negativo al polo positivo de la fuente de suministro de fuerza electromotriz (FEM).
En un circuito eléctrico cerrado la.corriente circula siempre del polo.negativo al polo positivo de la.fuente de fuerza electromotriz.(FEM),
Quizás hayamos oído hablar o leído en algún texto que el sentido convencional de circulación de la corriente eléctrica por un circuito es a la inversa, o sea, del polo positivo al negativo de la fuente de FEM. Ese planteamiento tiene su origen en razones históricas y no a cuestiones de la física y se debió a que en la época en que se formuló la teoría que trataba de explicar cómo fluía la corriente eléctrica por los metales, los físicos desconocían la existencia de los electrones o cargas negativas.
Al descubrirse los electrones como parte integrante de los átomos y principal componente de las cargas eléctricas, se descubrió también que las cargas eléctricas que proporciona una fuente de FEM (Fuerza Electromotriz), se mueven del signo negativo (–) hacia el positivo (+), de acuerdo con la ley física de que "cargas distintas se atraen y cargas iguales se rechazan". Debido al desconocimiento en aquellos momentos de la existencia de los electrones, la comunidad científica acordó que, convencionalmente, la corriente eléctrica se movía del polo positivo al negativo, de la misma forma que hubieran podido acordar lo contrario, como realmente ocurre. No obstante en la práctica, ese “error histórico” no influye para nada en lo que al estudio de la corriente eléctrica se refiere.
REQUISITOS PARA QUE CIRCULE LA CORRIENTE ELÉCTRICA
Para que una corriente eléctrica circule por un circuito es necesario que se disponga de tres factores fundamentales:
1. Fuente de fuerza electromotriz (FEM). 2. Conductor. 3. Carga o resistencia conectada al circuito. 4.Sentido de circulación de la corriente eléctrica.
Una fuente de fuerza electromotriz (FEM) como, por ejemplo, una batería, un generador o cualquier otro dispositivo capaz de bombear o poner en movimiento las cargas eléctricas negativas cuando se cierre el circuito eléctrico.
Un camino que permita a los electrones fluir, ininterrumpidamente, desde el polo negativo de la fuente de suministro de energía eléctrica hasta el polo positivo de la propia fuente. En la práctica ese camino lo constituye el conductor o cable metálico, generalmente de cobre.
Una carga o consumidor conectada al circuito que ofrezca resistencia al paso de la corriente eléctrica. Se entiende como carga cualquier dispositivo que para funcionar consuma energía eléctrica como, por ejemplo, una bombilla o lámpara para alumbrado, el motor de cualquier equipo, una resistencia que produzca calor (calefacción, cocina, secador de pelo, etc.), un televisor o cualquier otro equipo electrodoméstico o industrial que funcione con corriente eléctrica.
Cuando las cargas eléctricas circulan normalmente por un circuito, sin encontrar en su camino nada que interrumpa el libre flujo de los electrones, decimos que estamos ante un “circuito eléctrico cerrado”. Si, por el contrario, la circulación de la corriente de electrones se interrumpe por cualquier motivo y la carga conectada deja de recibir corriente, estaremos ante un “circuito eléctrico abierto”. Por norma general todos los circuitos eléctricos se pueden abrir o cerrar a voluntad utilizando un interruptor que se instala en el camino de la corriente eléctrica en el propio circuito con la finalidad de impedir su paso cuando se acciona manual, eléctrica o electrónicamente.
INTENSIDAD DE LA CORRIENTE ELÉCTRICA
La intensidad del flujo de los electrones de una corriente eléctrica que circula por un circuito cerrado depende fundamentalmente de la tensión o voltaje (V) que se aplique y de la resistencia (R) en ohm que ofrezca al paso de esa corriente la carga o consumidor conectado al circuito. Si una carga ofrece poca resistencia al paso de la corriente, la cantidad de electrones que circulen por el circuito será mayor en comparación con otra carga que ofrezca mayor resistencia y obstaculice más el paso de los electrones.
Analogía hidráulica. El tubo del depósito "A", al tener un diámetro reducido, ofrece más resistencia a"B", que tiene mayor diámetro. Por tanto, el caudal o cantidad.de agua que sale por el tubo "B" será mayor que la que sale por el tubo "A".
Mediante la representación de una analogía hidráulica se puede entender mejor este concepto. Si tenemos dos depósitos de líquido de igual capacidad, situados a una misma altura, el caudal de salida de líquido del depósito que tiene el tubo de salida de menos diámetro será menor que el caudal que proporciona otro depósito con un tubo de salida de más ancho o diámetro, pues este último ofrece menos resistencia a la salida del líquido.
De la misma forma, una carga o consumidor que posea una resistencia de un valor alto en ohm, provocará que la circulación de los electrones se dificulte igual que lo hace el tubo de menor diámetro en la analogía hidráulica, mientras que otro consumidor con menor resistencia (caso del tubo de mayor diámetro) dejará pasar mayor cantidad de electrones. La diferencia en la cantidad de líquido que sale por los tubos de los dos tanques del ejemplo, se asemeja a la mayor o menor cantidad de electrones que pueden circular por un circuito eléctrico cuando se encuentra con la resistencia que ofrece la carga o consumidor.
La intensidad de la corriente eléctrica se designa con la letra ( I ) y su unidad de medida en el Sistema Internacional ( SI ) es el ampere (llamado también “amperio”), que se identifica con la letra ( A ).
EL AMPERE
De acuerdo con la Ley de Ohm, la corriente eléctrica en ampere ( A ) que circula por un circuito está estrechamente relacionada con el voltaje o tensión ( V ) y la resistencia en ohm () de la carga o consumidor conectado al circuito.
br>
Definición de ampere
Un ampere ( 1 A ) se define como la corriente que produce una tensión de un volt ( 1 V ), cuando se aplica a una resistencia de un ohm ( 1).
Un ampere equivale una carga eléctrica de un coulomb por segundo ( 1C/seg ) circulando por un circuito eléctrico, o lo que es igual, 6 300 000 000 000 000 000 = ( 6,3 · 1018 ) (seis mil trescientos billones) de electrones por segundo fluyendo por el conductor de dicho circuito. Por tanto, la intensidad ( I ) de una corriente eléctrica equivale a la cantidad de carga eléctrica ( Q ) en coulomb que fluye por un circuito cerrado en una unidad de tiempo.
Los submúltiplos más utilizados del ampere son los siguientes:
miliampere ( mA ) = 10-3 A = 0,001 ampere
microampere ( mA ) = 10-6 A = 0, 000 000 1 ampere
MEDICIÓN DE LA INTENSIDAD DE LA CORRIENTE ELÉCTRICA O AMPERAJE
La medición de la corriente que fluye por un circuito cerrado se realiza por medio de un amperímetro o un.miliamperímetro, según sea el caso, conectado en serie en el propio circuito eléctrico. Para medir.ampere se emplea el "amperímetro" y para medir milésimas de ampere se emplea el miliamperímetro.
La intensidad de circulación de corriente eléctrica por un circuito cerrado se puede medir por medio de un amperímetro conectado en serie con el circuito o mediante inducción electromagnética utilizando un amperímetro de gancho. Para medir intensidades bajas de corriente se puede utilizar también un multímetro que mida miliampere (mA).
Amperímetro de gancho
Multímetro digital
Multímetro analógico
El ampere como unidad de medida se utiliza, fundamentalmente, para medir la corriente que circula por circuitos eléctricos de fuerza en la industria, o en las redes eléctricas doméstica, mientras que los submúltiplos se emplean mayormente para medir corrientes de poca intensidad que circulan por los circuitos electrónicos.
TIPOS DE CORRIENTE ELÉCTRICA
En la práctica, los dos tipos de corrientes eléctricas más comunes son: corriente directa (CD) o continua y corriente alterna (CA). La corriente directa circula siempre en un solo sentido, es decir, del polo negativo al positivo de la fuente de fuerza electromotriz (FEM) que la suministra. Esa corriente mantiene siempre fija su polaridad, como es el caso de las pilas, baterías y dinamos.
La corriente alterna se diferencia de la directa en que cambia su sentido de circulación periódicamente y, por tanto, su polaridad. Esto ocurre tantas veces como frecuencia en hertz (Hz) tenga esa corriente . A la corriente directa (C.D.) también se le llama "corriente continua" (C.C.).
La corriente alterna es el tipo de corriente más empleado en la industria y es también la que consumimos en nuestros hogares. La corriente alterna de uso doméstico e industrial cambia su polaridad o sentido de circulación 50 ó 60 veces por segundo, según el país de que se trate. Esto se conoce como frecuencia de la corriente alterna.
En los países de Europa la corriente alterna posee 50 ciclos o hertz (Hz) por segundo de frecuencia, mientras que los en los países de América la frecuencia es de 60 ciclos o hertz.
OTROS DATOS
Aunque desde hace años el Sistema Internacional de Medidas (SI) estableció oficialmente como“ampere” el nombre para designar la unidad de medida del amperaje o intensidad de la corriente eléctrica, en algunos países de habla hispana se le continúa llamando “amperio”.
El ampere recibe ese nombre en honor al físico y matemático francés André-Marie Ampère (1775 – 1836), quién demostró que la corriente eléctrica, al circular a través de un conductor, producía un campo magnético a su alrededor. Este físico formuló también la denominada “Ley de Ampere”.
Un circuito es una red eléctrica (interconexión de dos o más componentes, tales como resistencias, inductores, condensadores, fuentes,interruptores y semiconductores) que contiene al menos una trayectoria cerrada. Los circuitos que contienen solo fuentes, componentes lineales (resistores, condensadores, inductores) y elementos de distribución lineales (líneas de transmisión o cables) pueden analizarse por métodos algebraicos para determinar su comportamiento en corriente directa o en corriente alterna. Un circuito que tiene componentes electrónicos es denominado un circuito electrónico. Estas redes son generalmente no lineales y requieren diseños y herramientas de análisis mucho más complejos.
Partes
Figura 1: circuito ejemplo.
Componente: Un dispositivo con dos o más terminales en el que puede fluir interiormente una carga. En la figura 1 se ven 9 componentes entre resistores y fuentes.
Nodo: Punto de un circuito donde concurren más de dos conductores. A, B, D, E son nodos. Nótese que C no es considerado como un nuevo nodo, puesto que se puede considerar como un mismo nodo en A, ya que entre ellos no existe diferencia de potencial o tener tensión 0 (VA - VC = 0).
Rama: Conjunto de todos los elementos de un circuito comprendidos entre dos nodos consecutivos. En la figura 1 se hallan siete ramales: AB por la fuente, BC por R1, AD, AE, BD, BE y DE. Obviamente, por un ramal sólo puede circular una corriente.
Malla: Cualquier camino cerrado en un circuito eléctrico.
Fuente: Componente que se encarga de transformar algún tipo de energía en energía eléctrica. En el circuito de la figura 1 hay tres fuentes: una de intensidad, I, y dos de tensión, E1 y E2.
Conductor: Comúnmente llamado cable; es un hilo de resistencia despreciable (idealmente cero) que une los elementos para formar el circuito.
Circuito en serie
Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos están unidos para un solo circuito (generadores, resistencias, condensadores, interruptores, entre otros.) se conectan secuencialmente. La terminal de salida del dispositivo uno se conecta a la terminal de entrada del dispositivo siguiente.
Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Unabatería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise.
Circuito paralelo
El circuito eléctrico en paralelo es una conexión donde los puertos de entrada de todos los dispositivos (generadores, resistencias,condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida.
Siguiendo un símil hidráulico, dos tinacos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo, gastando así menos energía.
En un circuito en paralelo cada receptor conectado a la fuente de alimentación lo está de forma independiente al resto; cada uno tiene su propia línea, aunque haya parte de esa línea que sea común a todos. Para conectar un nuevo receptor en paralelo, añadiremos una nueva línea conectada a los terminales de las líneas que ya hay en el circuito.
Circuito mixto
Un circuito mixto como lo muestra la imágen es una combinación de varios elementos conectados tanto en paralelo como en serie, estos pueden colocarse de la manera que sea siempre y cuando se utilicen los dos diferentes sistemas de elementos, tanto paralelo como en serie.
Estos circuitos se pueden reducir resolviendo primero los elementos que se encuetran en serie y luego los que se encuentren en paralelo, para luego calcular y reducir un circuito unico y puro.
ELECTRICIDAD Y CORRIENTE ELECTRICA
Hacia el año 600 antes de Cristo (a.C.), el filósofo griego Tales de Miletodescubrió que una barra de ámbar frotada con un paño atraía objetos pequeños, como trocitos de papel. Llamó electricidad a la propiedad adquirida por la barra, porque ámbar en griego se dice elektron.
El fenómeno se observa también en muchos otros materiales, como plástico o vidrio, y modernamente se llama carga eléctrica a la propiedad que adquieren al frotarlos. La corriente eléctrica que utilizamos diariamente consta de cargas eléctricas en movimiento, que se producen en formas más eficientes que frotando cuerpos.
Carga eléctrica
La carga eléctrica es una magnitud física característica de los fenómenos eléctricos. La carga eléctrica es una propiedad de los cuerpos. Cualquier trozo de materia puede adquirir carga eléctrica.
La electricidad estática es una carga eléctrica que se mantiene en estado estacionario (en reposo) sobre un objeto, causada por la pérdida o ganancia de electrones.
Todo cuerpo se compone de átomos, cada uno de los cuales posee igual número de electrones y protones.
Los electrones poseen una carga negativa, y los protones una carga positiva. Estas cargas se contrarrestan unas a otras, para que el objeto resulte neutro (no cargado).
Pero al frotar, por ejemplo, un peine o peineta sobre un chaleco los electrones saltan del chaleco al peine y éste se carga de electricidad estática.
El peine pasa a tener más electrones que protones y se carga negativamente, mientras que el chaleco con más protones que electrones, se carga positivamente.
Por lo tanto, se pueden definir dos tipos de cargas eléctricas:
1.- Carga positiva: Corresponde a la carga del protón.
2.- Carga negativa: Corresponde a la carga del electrón.
Las cargas eléctricas no se crean al frotar un cuerpo, sino que se trasladan.
Las cargas del mismo signo se repelen y las cargas de signo contrario se atraen.
Igual signo: se repelenDistinto signo: se atraen
En todos los fenómenos eléctricos que se originan en el interior de un sistema aislado, vale la ley de conservación de cargas , según la cual la suma de las cargas eléctricas positivas menos la de las cargas negativas se mantiene constante.
La unidad con que se mide la carga eléctrica es el coulomb (C), en honor a Charles Coulomb, y que corresponde a lo siguiente:
1 Coulomb = 6,25x1018 electrones. Por lo que la carga del electrón es de 1,6x10-19 C.
Para lograr que un cuerpo quede cargado eléctricamente requerimos que haya en él un exceso de uno de los dos tipos de carga (+ o – ), lo cual podemos lograr haciendo uso de diferentes procesos, como el frotamiento (ya visto en el ejemplo del peine), elcontacto y la inducción.
Un segundo método de carga es por contacto, el cual requiere "contacto" físico para que ocurra transferencia de electrones además de la existencia de un cuerpo previamente cargado. No es muy eficiente, ya que por sucesivos toques al final la carga se va "terminando". Tiene como característica fundamental que el cuerpo adquiere el mismo signo del cuerpo que está inicialmente cargado.
Electrización por inducción
Un cuerpo cargado eléctricamente puede atraer a otro cuerpo que está neutro. Cuando acercamos un cuerpo electrizado (en la figura de abajo el tubo con carga negativa) a un cuerpo neutro (la esfera colgante), se establece una interacción eléctrica entre las cargas del primero y el cuerpo neutro.
Como resultado de esta relación, la redistribución inicial se ve alterada: las cargas con signo opuesto a la carga del cuerpo electrizado se acercan a éste.
En este proceso de redistribución de cargas, la carga neta inicial no ha variado en el cuerpo neutro, pero en algunas zonas está cargado positivamente y en otras negativamente.
Decimos entonces que aparecen cargas eléctricas inducidas. Entonces el cuerpo electrizado induce una carga con signo contrario en el cuerpo neutro y por lo tanto lo atrae.
El fenómeno de la electrización consiste, como ya vimos, en una pérdida o ganancia de electrones. Para que se produzca, los electrones han de tener movilidad.
Electroscopio
Existen algunos materiales, como los metales, que tienen la propiedad de permitir el movimiento de cargas eléctricas, y por ello reciben el nombre de conductores eléctricos. En cambio, hay otros, como el vidrio, el plástico, la seda, etc., que impiden el movimiento de cargas eléctricas a través de ellos, y por esto reciben el nombre de aisladores o aislantes eléctricos.
No podemos olvidar que ningún conductor es ciento por ciento conductor ni que tampoco un material aislante es ciento por ciento aislante. De alguna manera, todos los materiales conductores impiden cierta movilidad de cargas y, por otra parte, todos los materiales aislantes permiten algo de movilidad de cargas.
Electroscopio
El electroscopio es un aparato que permite averiguar si un cuerpo está eléctricamente cargado o no lo está. Se compone de una botella de vidrio, un tapón de goma por cuyo centro pasa una varilla metálica que tiene, en uno de sus extremos, una pelotilla metálica y, en el otro, dos laminillas de oro o platino que, al cargarse, por contacto o por inducción, se repelen (se separan).
Corriente eléctrica
Diferencia de potencial
Las cargas eléctricas en movimiento en un conductor constituyen una corriente eléctrica.
La corriente eléctrica es producida por una diferencia de potencial entre dos puntos. Se produce una diferencia de potencial entre dos puntos cuando éstos tienen cargas de diferente signo.
¿Cómo se produce la corriente?
Todos los cuerpos existentes en la naturaleza están eléctricamente neutros mientras no se rompa el equilibrio que existe entre el número de electrones y de protones que poseen sus átomos.
Los cuerpos en la naturaleza tienden a estar neutros; es decir, tienden a descargarse. Cuando un conductor C une dos cuerpos A y B, el cuerpo A con exceso de electrones y el cuerpo B con déficit de electrones, los electrones se distribuyen uniformemente entre ambos cuerpos. El movimiento de los electrones a través de C se conoce como corriente eléctrica.
La fuerza que impulsa a los electrones a moverse se debe a la diferencia de potencial o tensión (V) que existe entre A y B. Si la tensión es muy alta, los electrones pueden pasar de un cuerpo al otro a través del aire, por ejemplo, el rayo. En cambio, si la tensión es baja, los electrones necesitan ciertos materiales, llamados conductores, para pasar de un cuerpo a otro.
Los conductores más importantes son los metales. La Tierra es un inmenso conductor que, debido a que tiene tantos átomos, puede ganar o perder electrones sin electrizarse. Por esto, si un cuerpo electrizado se conecta a tierra, se produce una corriente eléctrica, hasta que el cuerpo se descarga.
Un cuerpo neutro tiene potencial eléctrico nulo.
Un cuerpo con carga positiva (déficit de electrones) tiene potencial positivo.
Un cuerpo con carga negativa (exceso de electrones) tiene potencial negativo.
En otros términos, la corriente eléctrica se define como un flujo de electrones.
Existen dos tipos de corriente: la corriente alterna y la corriente continua.
a) Corriente continua: Abreviado como DC, es aquella en la cual las cargas se mueven en una sola dirección. Las pilas y baterías producen este tipo de corriente.
b) Corriente alterna: Abreviada AC, es aquella en la cual las cargas fluyen en una dirección y luego en dirección opuesta. Su polaridad cambia de forma cíclica en el circuito. Las veces (ciclos) o “frecuencia” en que cambia por segundo se mide en hertz (Hz).
En un circuito los electrones circulan desde el polo negativo al polo positivo, este es el sentido de la corriente, la que recibe el nombre de corriente real. Pero los técnicos usan una corriente convencional, donde el sentido del movimiento es el contrario de la corriente real, es decir, el sentido es del polo positivo al polo negativo.
Diferencia de potencial
La diferencia de potencial (o tensión) entre dos puntos es la energía que hay que dar a una carga positiva para desplazarla desde un punto al otro. La unidad de medida es el voltio (V).
Del mismo modo que se necesita una presión para que circule agua por una tubería, se necesita tensión (fuerza) para que circule la corriente eléctrica por un conductor.
El instrumento para medir la diferencia de potencial, tensión o voltaje es el voltímetro. Este se conecta en paralelo en el circuito a medir.
La intensidad de corriente
Es la cantidad de carga eléctrica que circula por un conductor por unidad de tiempo. Su unidad es el amperio (A). Corresponde al paso de un coulomb de carga cada segundo.
El instrumento que mide la intensidad es el amperímetro. Se conecta en serie en el circuito a medir.
Resistencia
Los electrones, al moverse a través de un conductor, deben vencer una resistencia; en los conductores metálicos, esta resistencia proviene de las colisiones entre los electrones. La resistencia eléctrica de un conductor se define como la oposición que presenta un conductor al paso de la corriente a través de él.
La unidad de resistencia es el ohmio (W o Ω): resistencia que ofrece un conductor cuando por él circula un amperio y entre sus extremos hay una diferencia de potencial de un voltio.
La resistencia eléctrica de un conductor depende de su naturaleza, de su longitud y de su sección.
A mayor longitud, mayor resistencia. A mayor sección, menos resistencia.
R = ρ • L/S
ρ es una constante que depende del material, llamada resistividad.
La diferencia de potencial entre dos puntos de un conductor es directamente proporcional a la intensidad que circula por él. La relación entre estos factores constituye una ley fundamental.
V = I • R
Elementos de un circuito
Un circuito eléctrico es el camino o ruta por donde pasa la corriente eléctrica. Para esto necesitamos un conjunto de elementos conductores conectados para transmitir la electricidad.
El generador o fuente de energía para mover las cargas eléctricas.
La resistencia o material que dificulta o permite el paso de la corriente.
Los cables de conexión entre la fuente y los aparatos eléctricos
El interruptor o punto de control de corriente: cerrado o abierto.
Ejemplo:
Circuito en serie
Tiene sólo un camino de recorrido para la corriente. Si más de un componente es conectado en este circuito toda la corriente fluirá a través de dicho camino.
Las ampolletitas del árbol de Pascua están conectadas en serie, si tú sacas una de ellas (o si se quema) se apagan todas porque el circuito queda interrumpido.
Las características de las resistencias conectadas en serie son:
a) por cada resistencia circula la misma corriente
b) la tensión de la fuente es igual a la suma de las tensiones de cada una de las resistencias
V = V1 + V2 + V3
c) la resistencia equivalente a todas ellas es igual a la suma de cada resistencia
R = R1 + R2 + R3
Circuito en paralelo
Este circuito tiene más de un camino para que la corriente circule.
Las ampolletas de la mesa del comedor están conectadas en paralelo, si se quema una de ellas no se apagan las otras porque cada una está conectado en forma independiente a la fuente de corriente
Las características de las resistencias conectadas en paralelo son:
a) la corriente que produce la fuente es igual a la suma de la corriente que circula por cada resistencia
I = I1 + I2 + I3
b) la tensión de la fuente es igual a la tensión de cada una de las resistencias
V = V1 = V2 = V3
c) la resistencia equivalente a todas ellas es igual a la suma del inverso de cada resistencia
Hoy habia 12 visitantes (21 clics a subpáginas) ¡Aqui en esta página!
Acerca de esta página
Aqui puede anotar algunas informaciones sobre su página web o introducir p.ej. enlaces que conducen hacia sus colegas o cosas parecidas;-)